
1

Post 5.0 -- Repetitive Stimulus Sets

Functionality Tree Recap

A functionality tree is a horizontal tree-like notation that serves as an implementation-
independent schematic of the external interface of a system. The relationship depicted in a
functionality tree is the New Stimulus Set Response (NSR) by which a stimulus of one
stimulus set activates another stimulus set. The NSR stimulus activation relationship among
stimulus sets gives the external interface a hierarchical structure. Because Freedom recognizes
a specification of the external interface as a specification of system requirements, the
hierarchical architecture of the external interface is also the architecture of the functionality
requirements of the system.

 History List Expansion in the AAR Functionality Tree

In the last post, expansion of the 'history list' stimuli of the Adobe Acrobat Reader (AAR)
functionality tree was left as an exercise. The following is a subset of the AAR Functionality
Tree showing the history list stimuli in unexpanded form:

 AAR Functionality Tree

Level 0 Level 1 Level 2

Main Opts File SS
--------- -------------------
File Open

Close
Save A Copy
Document Properties
Document Security
Page Set Up
Print

history list ***EXERCISE***
Exit

Edit
Document
View
Window
Help

Experimenting with the history list stimuli as part of performing the history list expansion
reveals that a history list stimulus has an extensive NSR response -- an entire new instance of
AAR is launched in a separate window.

How do we deal with this in the functionality tree? One approach is to replicate the entire
functionality tree to the right of the 'history list" stimuli, like so:

2

AAR Functionality Tree

Level 0 Level 1 Level 2 Level 3

Main Opts File SS
--------- -------------------
File Open

Close
Save A Copy
Document Properties
Document Security
Page Set Up
Print

Main Opts File SS
--------- -------------------

history list File Open
Close
Save A Copy
Document Properties
Document Security
Page Set Up
Print

history list ***EXERCISE***
Exit

Exit
Edit
Document
View
Window
Help

Edit
Document
View
Window
Help

However, this approach quickly leads to trouble since the history list expansion needs to be
replicated yet again, and again, and again, ... The problem is infinitely recursive.

Fortunately, there is an easy way to handle such cases. The solution is to expand the
functionality tree using a referential placeholder:

AAR Functionality Tree

3

Level 0 Level 1 Level 2

Main Opts File SS
--------- -------------------
File Open

Close
Save A Copy
Document Properties
Document Security
Page Set Up
Print

Main Opts

history list (reused SS)
Exit

Edit
Document
View
Window
Help

In the above (correct) example, the name of the Main Ops stimulus set is placed to the right of
the 'history list' stimuli (since a history list stimulus triggers the Main Ops stimulus set), but
its stimuli are not explicitly listed. In their place, a note is inserted indicating that this is a
reused instance of a stimulus set that has been defined previously.

There are several advantages to this approach:

1. Mechanical recording problems associated with recursion are avoided.
2. Any future changes to the stimuli in the explicit Main Ops stimulus set definition at

Level 0 are automatically "inherited" by the stimulus set to the right of 'history list' (as
well as by any other Main Ops references, regardless of where they may occur), making
maintenance of the functionality tree easier.

3. The referential placeholder serves as an indication that the referenced stimulus set has
greater than single-use utility, i.e., the stimulus set may be a candidate for requirements
reuse.

Repetitive and Reusable Stimulus Sets

In the above example, the referential placeholder to the Main Ops stimulus set at Level 2 may
be considered as either a repetitive or a reusable stimulus set. The distinction is as follows:

A repetitive stimulus set is a stimulus set that can be activated by stimuli in two or more
different stimulus sets of an application.

4

A reusable stimulus set is a stimulus set (SS) that is activated by stimuli in two or more
different application programs. (Note: different physical instances of the SS are typically
activated.)

A reusable stimulus set may also be repetitive, that is, it may, if desired, be activated from
multiple stimulus sets of the same application. However, a repetitive stimulus set is not
necessarily reusable, i.e., just because a stimulus set is activated from multiple places in a
single application does not necessarily imply it will have utility in an entirely different
application.

As an example, consider the Main Ops stimulus set above. It is clearly repetitive due to being
activated by stimuli in two different stimulus sets. However, is it reusable? That is, is the
entire AAR application useful as a subtree in an entirely different application program? It
certainly could be. For instance, it is easy to envision a mail reader which invokes AAR to
read pdf files sent as attachments. How easy this may be in practice depends on the
implementation details of the AAR application in general, and the programmatic invocation
interface to the Main Ops stimulus set in particular. One would have to have programming
level documentation to AAR to determine if Adobe implemented AAR in a way that
promoted easy reuse from other applications.

Had Adobe used a functionality tree to design the AAR external interface, one of the first
clues that AAR might be a candidate to implement as a reusable component is the fact that
Main Ops is repetitive in the functionality tree. While not all repetitive stimulus sets are
reusable, all reusable stimulus sets are repetitive across different applications. Hence, the fact
that a stimulus set is repetitive within a single application serves as a flag that the stimulus set
should be evaluated more closely for possible utility as a reusable stimulus set.

Repetitive stimulus sets are significant in another respect as well. As we shall see in the next
post, repetitive stimulus sets influence the number of behavior tables that need to be specified.

Rick Lutowski

5

Post 6.0 -- Behavior Tables
Repetitive Stimulus Sets Recap

A repetitive stimulus set is a stimulus set that is activated by stimuli in two or more different
stimulus sets of an application. A reusable stimulus set is a stimulus set that is activated by
stimuli in two or more different applications. Repetitive stimulus sets in a functionality tree
are a flag of potential requirements reusability. Repetitive stimulus sets are recorded in a
functionality tree by reference to a defining instance. The defining instance may be in the
same or a different functionality tree.

Responses to Stimuli

Specification of a partial functionality tree defines an initial set of stimuli for the
application. The second step in the three step Freedom requirements specification process is to
specify the responses to those stimuli.

Responses may be characterized by their visibility, desirability, and prescriptiveness.

There are two kinds of responses based on their visibility: external internal. External
responses are detectable outside the software system black box, and therefore are part of the
system's requirements information set. Internal responses are not detectable outside the
software system black box, and thus are part of the system's design and implementation
information sets.

There are two kinds of responses based on desirability: normal and error responses. Normal
responses are the expected response to a stimulus in normal operation. Error responses are
undesirable or exceptional responses, and generally indicate a deviation from normal
operation.

Freedom explicitly recognizes a subtype of normal response, called a new stimulus response
(NSR). NSR is treated as a separate category of normal response due to its special relevance to
the functionality tree and stimulus set organization, as noted in the previous post. A NSR is
always an external response, i.e., it is always part of the requirements information. (Note: An
Error NSR response is also a logical possibility, but is not significant enough to warrant a
separate type.) This results in a total of three types of responses based on desirability: normal,
NSR, and error.

There are two kinds of responses based on prescriptiveness: binding and guidance. Binding
responses are specified by the customer, and must be implemented by the developers exactly
as specified unless a change to the response is explicitly agreed to by the customer.

Guidance responses are specified at the discretion of the development team. They may be
changed at will by the development team using whatever specification control mechanisms the
team desires or, perhaps, is imposed on the team by a project management methodology
external to Freedom. As far as Freedom is concerned, guidance responses are completely non-

6

binding on the development team and need not be implemented as specified, or need not be
implemented at all.
The only important responses to Freedom are the binding responses. Providing the binding
responses are met, any non-binding response may be used in support at the complete
discretion of the development team.

Response Classification

The above response attributes may be combined into a composite list of response types to
produce what has been variously called a "classification list" (Lutowski, 1978 [not on web]) or
an "option field" (Warfield, mid-80s):

Unexpanded attributes:

Visibility Desirability Prescriptive
---------- ------------ ------------
external normal binding
internal NSR guidance

error

Expanded attributes (Classification List):

Visibility Desirability Prescriptive Response Category
---------- ------------ ------------ -----------------
external normal binding Normal
external normal guidance invalid, requirements always binding
external NSR binding NSR
external NSR guidance invalid, requirements always binding
external error binding Error
external error guidance invalid, requirements always binding

internal normal binding D&I Constraint, normal
internal normal guidance D&I Guidance, normal
internal NSR binding invalid, NSR always external
internal NSR guidance invalid, NSR always external
internal error binding D&I Constraint, error
internal error guidance D&I Guidance, error

Response Classification List:

Visibility Desirability Prescriptive Response Category
---------- ------------ ------------ -----------------

7

external normal binding Normal
external NSR binding NSR
external error binding Error
internal normal binding D&I Constraint, normal

internal normal guidance D&I Guidance, normal
internal error binding D&I Constraint, error
internal error guidance D&I Guidance, error

Behavior Tables

The response behavior to a stimulus is recorded in a notation called a Behavior Table
(BT). One behavior table is created for each unique stimulus set in the functionality tree. The
table contains a. One column for each Response Category defined above, and b. One row for
each stimulus of the stimulus set.

In addition, the BT contains a column for Performance-Accuracy-Precision (PAP) attributes
of the response. Performance includes any time restrictions on the response, such as maximum
time to respond, or required periodicity. Accuracy includes requirements relating to maximum
allowed deviation from a correct answer. For example, NP-incomplete problems such as the
'traveling salesman' shortest path problem are not solvable in reasonable amounts of time, but
may be solvable rapidly if, say, a 20% deviation from the true shortest path is
allowed. Precision relates to requirements such as number of significant digits in a result, or if
an integer result is acceptable rather than a floating point result.

The general format of a behavior table is:

Behavior Table for SS _____
D&I D&I

Stimulus Normal NSR Error Constraint Guidance PAP
-------- -------- -------- -------- ---------- -------- --------
stimulus
-------- -------- -------- -------- ---------- -------- --------
 :
-------- -------- -------- -------- ---------- -------- --------
stimulus
-------- -------- -------- -------- ---------- -------- --------

As the above format shows, each behavior table defines responses to all the stimuli in a single
stimulus set. Each row of the behavior table specifies the response to one stimulus.

The above table merges normal and error responses for internal (Constraint and Guidance)
responses since these are of less significance to requirements specification than external

8

responses. These columns may be expanded to segregate normal and error internal responses
if desired.

Finally, because a behavior table is created for each _unique_ stimulus set in the functionality
tree, one behavior table represents all instances of a repetitive or reusable stimulus set. It
makes no difference how many instances of the stimulus set there may be, or which
functionality tree (application program) it may occur in, only one behavior table need be
defined for a repetitive or reusable stimulus set.

Example Behavior Tables

For an example of a behavior table for an actual application program. we again turn to our
example of Adobe Acrobat Reader (AAR) 5.08. Since AAR was not developed using
Freedom, BTs were never created for it, so we will attempt to reverse engineer one. Our
example will show only requirements (externally visible) responses. Reverse engineering the
total response (external+internal) requires internal visibility, i.e., source code. Therefore, we
will ignore the Constraint and Guidance internal response columns.

For our example, we will focus on the Level 0 Main Ops stimulus set of the AAR
functionality tree:

AAR Functionality Tree

Level 0 Level 1 Level 2

Main Opts File SS
--------- -------------------
File Open

Close
Save A Copy
Document Properties
Document Security
Page Set Up
Print

Main Opts

history list (reused SS)
Exit

Edit SS
- - - - - -

Edit ...

Document SS
- - - - -

Document ...

9

View SS
- - - - -

View ...

Window SS

Window ...

Help SS
- - - - - - -

Help ...

A minimal BT showing the basic NSR responses can be created directly from the functionality
tree:

AAR Behavior Table for Main Opts SS
D&I D&I

Stimulus Normal NSR Error Constraint Guidance PAP
-------- -------- -------- -------- ---------- -------- --------
File

activate File SS
-------- -------- -------- -------- ---------- -------- --------
Edit

activate Edit SS
-------- -------- -------- -------- ---------- -------- --------
Document

activate Document SS
-------- -------- -------- -------- ---------- -------- --------
View

activate View SS
-------- -------- -------- -------- ---------- -------- --------
Window

activate Window SS
-------- -------- -------- -------- ---------- -------- --------
Help

activate Help SS
-------- -------- -------- -------- ---------- -------- --------

Experimentation with these six stimuli shows no other externally detectable
response. However, one addition is needed to complete this BT.

All behavior tables may optionally include an initialization stimulus. The response to the
initialization stimulus is any action taken by the stimulus set as a direct result of its
activation. The initialization stimulus is associated with the activation relationship of the FT,

10

and is not usually shown as an explicit stimulus in the functionality tree. It appears explicitly
in the BT if a specific response is associated with activation. If there is no activation response,
the initialization stimulus need not appear in the BT.

In the case of AAR, experimentation shows that including the name of a pdf file on the
command line from which AAR is run results in that pdf file being displayed on AAR start
up. There are a couple different ways this can be handled in Freedom, but the simplest for our
example is to treat this response as an initialization response of Main Ops:

AAR Behavior Table for Main Opts SS
D&I D&I

Stimulus Normal NSR Error Constraint Guidance PAP
-------- -------- -------- -------- ---------- -------- --------
init INPUT

 pdf_file
 pdf_file_name
 pdf_file_content

IF pdf_file_name specified
 IF pdf_file is found and valid

display Main Ops
activate Right Display Region SS
activate Left Display Region SS

show pdf_file_content in Right Display Region 1.0 sec max
 ENDIF
 IF pdf_file not found or invalid

activate File Error SS
display Main Ops

 ENDIF
ENDIF
IF pdf_file_name not specified
 display Main Ops
ENDIF

-------- -------- -------- -------- ---------- -------- --------
File

activate File SS
-------- -------- -------- -------- ---------- -------- --------
Edit

activate Edit SS
-------- -------- -------- -------- ---------- -------- --------
Document

activate Document SS
-------- -------- -------- -------- ---------- -------- --------
View

activate View SS
-------- -------- -------- -------- ---------- -------- --------
Window

11

activate Window SS
-------- -------- -------- -------- ---------- -------- --------
Help

activate Help SS
-------- -------- -------- -------- ---------- -------- --------

Now the BT is starting to look more interesting. Let's look more closely at the initialization
response behavior:

D&I D&I
Stimulus Normal NSR Error Constraint Guidance PAP
-------- -------- -------- -------- ---------- -------- --------

01 init INPUT
02 pdf_file
03 pdf_file_name
04 pdf_file_content
05
06 IF pdf_file_name specified
07 IF pdf_file is found and valid
08 display Main Ops
09 activate Right Display Region SS
10 activate Left Display Region SS
11 show pdf_file_content in Right Display Region 1.0 sec max
12 ENDIF
13 IF pdf_file not found or invalid
14 activate File Error SS
15 display Main Ops
16 ENDIF
17 ENDIF
18 IF pdf_file_name not specified
19 display Main Ops
20 ENDIF

-------- -------- -------- -------- ---------- -------- --------

Line 6:
The conditional nature of the response is captured using a typical IF clause. (Let's call it a
'clause' not a 'statement' because we are not programming here, but capturing behavior using
what amounts to structured English.) The phrase after the IF denotes some _externally-
visible_ condition, in this case the existence of a file name associated with launching
AAR. Checking for this file name is part of normal operation, so the statement is aligned with
the Normal external response column.

Lines 7-12:
If the file is found and is a valid pdf file, Main Ops is displayed and the Left and Right
Display Region SSs are activated. (Note: Main Ops has already been activated because we are
responding to its initialization stimulus. It merely remains to make it visible.) The content of

12

the pdf file is then displayed in the Right Display Region. See post 3 for a discussion of the
Right and Left Display regions.

For the sake of illustration, we pretend the customer specified that the time to launch AAR
with a pdf file specified not exceed the time to launch without a pdf file specified by more
than 1 second. This requirement is captured by associating a Performance requirement of 1.0
second maximum with the 'show pdf file content' response.

Notice that the response behavior clauses are phrases of the form "verb noun" or "action
quantity" or "operation object", and are NEVER prose. This form results in response behavior
clauses that are clear and succinct. Following these form guidelines:

1 helps reduce ambiguity, misinterpretation and misunderstanding inherent in prose,
2 helps eliminate grammatical wordsmithing which diverts focus from the goal of

defining response behavior, and
3 reduces the 'conceptual distance' between requirements specification and

implementation, i.e., the behavior specs read like English fragments to customers while
reading like code fragments to developers.

Lines 1-4:
Freedom's response recording convention is to list, at the top of the behavior spec for each
stimulus, INPUT, OUTPUT, and LOCAL quantities referenced by the response behavior
clauses for the stimulus. The quantity names specified under the INPUT, OUTPUT, and
LOCAL headings should be used consistently throughout the behavior specification
clauses. This helps avoid referring to the same quantity be multiple names, which can lead to
confusion and misunderstandings.

When listing the quantities, it is very important to subject each quantity to a test:

"Is this quantity externally visible?"

If the answer is "no", i.e., the quantity is internal to the black box, then that quantity must
appear in the LOCAL list, and any clauses it appears in must _not_ appear in any external
response column; they may only appear in a Constraints or Guidance column. If the quantity
was defined by the customer as implementation direction, the quantity and all clauses it
appears in are listed under the D&I Constraints column and are binding, If it was defined by a
developer, it and all clauses it appears in are listed under the Guidance column and are non-
binding. Thus, explicitly listing all quantities as INPUT and OUTPUT (external) or LOCAL
(internal) helps avoid the serious error of inadvertently specifying internal responses as
requirements.

Lines 13-16
If the file is not found or is not a valid pdf file, the File Error stimulus set is activated. Main
Ops is then displayed. Since there is no valid pdf file specified, the Left and Right Display
Regions are not activated.

13

Note that activation of the File Error SS is both an Error and an NSR response. Since its status
as a NSR is clear, we list it in the Error external response column to highlight its exceptional
nature.

Line 18-20:
If no file name is specified on AAR start up, the response is simply to display Main Ops.

Iteration with Functionality Tree

Recall that line 14 of the init response specified activation of the File Error SS. Because the
existence of this stimulus set was identified during response behavior experimentation, this
stimulus set did not previously appear in the functionality tree. We must now go back and
correct this oversight.

The File Error SS consists of a single stimulus labeled "OK". Also, the stimulus set is
activated from the initialization stimulus of Main Ops. This results in the following revised
FT:

AAR Functionality Tree

Level 0 Level 1 Level 2

Main Opts File Error SS
----------- ----------------
Init OK

File SS

File Open
Close
Save A Copy
Document Properties
Document Security
Page Set Up
Print

Main Opts

history list (reused SS)
Exit

Edit SS
- - - - - -

Edit ...

Document SS

14

- - - - -
Document ...

View SS
- - - - -

View ...

Window SS

Window ...

Help SS
- - - - - - -

Help ...

The above makes the FT consistent with the BT, so nominally all is well. However, explicit
appearance of a stimulus set initialization stimulus in the FT is a warning flag that the
requirements specification may not be quite right. This is, in fact, the case. The above FT is an
over-simplification of the actual FT for AAR, intended to keep the posts shorter, less
complex, and less confusing. The need to list init in the FT is the result of my having omitted
something that would be important were we seriously attempting to model the AAR
requirements. The omission is this:

Main Ops does not really occur at Level 0, i.e, it is not the first stimulus set to become active
when AAR is launched. The first stimuli that AAR is primed to detect are command line
arguments -- another set of human user stimuli totally separate from the GUI. The
pdf_file_name quantity in the Main Ops BT is received in the form of stimuli (input) from the
command line. The AAR command line arguments form a command-data protocol that results
in another entire sub-branch of the FT, starting at the real Level 0. The activation of Main Ops
is part of the response to one or more of these command line stimuli. So is activation of File
Error SS. In fact, most if not all of the Main Ops init responses are properly responses to
command line stimuli, and not the Main Ops init stimulus. Where the command line part of
the FT completed, the need for including the Main Ops init response in the Main Ops BT
would likely disappear. There would also be no need to include init in the FT, thus lowering
the warning flag that something was amiss.

However, this omission and the resulting anomalies did not prevent the above behavior table
from serving its instructional purpose, and probably helped. It afforded an opportunity to
introduce the init stimulus and associated issues. The response clauses to the init stimulus
provided a representative picture of Freedom's response behavior recording syntax and
conventions.

Behavior Recording Notation Variants

15

One final word about the behavior recording syntax -- it is not locked in stone. Personally,
every time I create behavior tables for a new project, I find myself trying a new variant of the
recording syntax for use in the table "cells." The exact form of structured English (or PDL or
whatever one wishes to call it) is less important than the information it is used to capture, and
the characteristics of the capture process. Until such time as a BT-specific toolset is available
that requires conformance to a specific behavior recording syntax, there is value in
experimenting with different recording notation variants. After all, the software research
community has been seeking improved ways of recording response behavior for decades
without having found a notation that even a minority can agree upon. Thus, it would be highly
presumptuous
to claim that the above IF-style syntax is the best, or even the recommended, notation.

What is strongly recommended is to keep the following guidelines in mind when adopting a
response recording notation. A response behavior recording notation should:

A. be understandable to customers;
B. reduce the 'conceptual distance' to implementation for developers;
C. greatly reduce, if not eliminate, the need to 'wordsmith';
D. reduce the potential for ambiguity and misinterpretation;
E. avoid the use of multiple terms for the same quantity; and, perhaps most importantly,
F. provide mechanisms to help avoid specification of internal behavior as requirements.

Rick Lutowski

From Brad Appleton
Rick Lutowski wrote:
> Freedom explicitly recognizes a subtype of normal response, called a new stimulus response
(NSR). NSR is treated as a separate category of normal response due to its special relevance to
the functionality tree and stimulus set organization, as noted in the previous post. A NSR is
always an external response, i.e., it is always part of the requirements information. (Note: An
Error NSR response is also a logical possibility, but is not significant enough to warrant a
separate type.) This results in a total of three types of responses based on desirability: normal,
NSR, and error.

NSR looks interesting because it is either a "plug point" e.g. "hot spot") between other
stimulus-sets, or else potential "coupling" point. So does an NSR increase, decrease, or have
no effect upon the coupling between the stimulus-sets it appears to "connect"?

If a requirements change is in the form of a new/changed NSR, what kind of ripple effect does
that tend to have on the functionality trees? On the behavior tables? How is that more or less
than when a requirements change is in the form of some new/changes stimulus that is not part
of (nor connected to) an NSR?

I'm also curious as the to impact (ripple effect or lack thereof) of "requirements" changes upon
the behavior tables.

16

Brad Appleton

17

Post 7.0 -- Functionality Modules

Behavior Table Recap

A behavior table (BT) is created for each unique stimulus set of the functionality tree for the
purpose of specifying the response behavior of its stimuli. A BT contains one row for each
stimulus of the stimulus set, and one column for each type of external and internal
response. Types of external responses (binding) are: Normal, NSR, and Error. Types of
internal responses are: D&I Constraints (binding) and D&I Guidance (non-binding). A PAP
column permits specification of Performance, Accuracy, and Precision attributes for each
clause of the behavior specification. The behavior specification clauses may use any notation
that meets the response recording notation guidelines. Both Mills and the author suggest PDL
or "structured English." Other notations such as formal methods are not ruled out, but prose is
discouraged.

Requirements Encapsulation Design Rule

Existence of a partial functionality tree and associated behavior tables permits the start of
design and implementation for the specified part of the application. As we saw in post 1, the
guiding design rule is:

 Create one functionality module for each unique stimulus set of the functionality tree.

To better illustrate application of this design rule, we turn to the functionality tree for Adobe
Acrobat Reader (AAR) 5.08. A composite of all the AAR functionality tree fragments
developed in previous posts is shown below. Since the design rule focuses on stimulus sets
rather than stimuli, all stimuli that do not activate additional stimulus sets have been left out
so as to simplify the functionality tree.

AAR Functionality Tree (partial, most stimuli not shown)

Level 0 Level 1 Level 2 Level 3

Main Opts File SS Open SS
--------- ------------------- ----------------
File Open ...

Save A Copy SS
- - - - - - - -

Save A Copy ...

Document Properties SS Summary SS
---------------------- ----------

Document Properties Summary ...

18

Fonts SS

Fonts ...
...

Document Security SS

Document Security ...

Page Set Up SS Paper SS
-------------- --------

Page Set Up Paper ...
...

Print SS Browse SS
-------- ---------

Print Browse ...
...

Main Opts
- - - - - - -

history list (reused SS)
,,,

Edit SS
- - - - - -

Edit ...

Document SS
- - - - -

Document ...

View SS
- - - - -

View ...

Window SS

Window ...

Help SS
- - - - - - -

Help ...

19

The above FT can be simplified further by showing only the stimulus set names. This makes
the stimulus set activation structure (defined by the New Stimulus Set Responses) of the FT
more apparent.

AAR Functionality Tree (partial, stimulus sets only)

Level 0 Level 1 Level 2 Level 3

Main Opts File SS Open SS
Save A Copy SS
Document Properties SS Summary SS

Fonts SS
Document Security SS
Page Set Up SS Paper SS
Print SS Browse SS
Main Opts (reused)

Edit SS
Document SS
View SS
Window SS
Help SS

The total number of stimulus sets can now easily be determined. The above AAR partial
functionality tree contains 18 stimulus sets, of which Main Ops has one repetitive
instance. Hence, the number of unique stimulus sets is 17. The requirements encapsulation
design rule thus implies that 17 functionality modules should be created to implement the
above portion of the AAR functionality tree. Each functionality module encapsulates one
stimulus set, where a stimulus set is a highly cohesive collection of requirements (stimulus-
response pairs.)

 Functionality and Common Service Modules

Of course, an application consists of more than just functionality modules. Other modules
encapsulate data structures, algorithms, and hardware interfaces just as in current OO
design. In Freedom, however, these "traditional" information-hiding modules acquire a new
meaning to their existence. They exist to provide common services in support of the required
response behaviors specified in the behavior tables and implemented by the functionality
modules. Because of this role, Mills called data and hardware-hiding OO modules "common
service" modules (CSMs). Freedom adopts this terminology.

From a design architecture standpoint, the difference between Freedom and current OO is:
a. In Freedom, the CSMs exist to support the FMs. FMs directly satisfy the requirements.

b. In traditional OO, all modules are CSMs because there are no FMs (i.e, requirements are
not encapsulated). Thus, the CSMs exist to support one another while simultaneously
satisfying the requirements.

20

The above would seem to imply that CSMs in Freedom are less complex than CSMs in
current OO since the burden of directly satisfying the requirements has been removed from
them. This is true for some CSMs, but not for all. For example, a printer device driver module
or a
stack data structure module would be no different in Freedom than is currently the
case. Modules that are conceptually closer to the external interface, however, may be
significantly different in Freedom than in current practice due to the existence of the
functionality modules.

 Canonical Design Architecture

The existence of both functionality modules and common service modules in Freedom gives
rise to a layered design architecture that is highly generic, i.e., it applies to all programs
developed using Freedom. Because it applies to all programs, Freedom calls it the Canonical
Design Architecture, where canonical means standard or orthodox (in the context of
Freedom).

The diagram below depicts the Freedom Canonical Design Architecture.

 requirements data and hw
 software encapsulation encapsulation
 black box Functionality Common Service
 interface Modules (FM) Modules (CSM)
 \ / / \ / \
 ===
 || | | |
external || FM relationship: | CSM relationships: | |
environment || 1. association (NSR) | 1. composition | |
 || | 2. inheritance | computer |
human users || near-tree structure | 3. polymorphism | hardware |
 || (identical to FT) | 4. association | |
external || | | |
system users || | network structure | |
 || | | |
 ===

__________________________/_______________________________________
/ \
Level 0 Level 1 Level 2 Level 3

Main Opts-+-File FM------------+-Open FM
 | NSR +-Save A Copy FM NSR
 | +-Document Properties FM-+-Summary FM
 | NSR | +-Fonts FM
 | NSR +-Document Security FM
 | +-Page Set Up FM-----------Paper FM
 | +-Print FM-----------------Browse FM
 | +-Main Opts (reused)
 +-Edit FM
 +-Document FM
 +-View FM
 +-Window FM
 +-Help FM

21

The implications of the requirements encapsulation design rule go beyond merely creating a
functionality module for each unique stimulus set. The New Stimulus Set relationship among
the stimulus sets must also be honored (after all, it is part of the requirements spec also.) The
NSR relationship among the stimulus sets carry over to the functionality modules (FM), and
organize the FMs in the same manner as it organizes the stimulus sets. Thus, the requirements
architecture of the stimulus sets is precisely mirrored in the design architecture of the
requirements encapsulating functionality modules, as illustrated in the bottom half of the
Canonical Design Architecture diagram, where the functionality module architecture
implementing the sample AAR functionality tree is illustrated.

The architectural symmetry between requirements and design in Freedom makes
maintainability easier because maintainers need to learn fewer architectures. Once
maintainers learn the architecture of the external interface (information that is needed to
properly maintain the interface), they also know the architecture of the implementing design
architecture. The benefits work in the other direction as well -- when a developer or
maintainer makes a change to the requirements architecture, no additional work is necessary
to know the impact on the functionality layer of the design architecture. Thus, the symmetry
benefits initial development as well as subsequent maintenance. However, because
maintenance cost exceeds development cost by up to 4:1, the primary beneficiaries of
Freedom's architectural symmetry are maintainers.

 Functionality Modules

A functionality module is an object-oriented program unit that encapsulates the requirements
(stimulus-response pairs) of one stimulus set. A FM is like any other OO module in that it
consists of methods and module-wide field data. The main difference from current OO
modules is that the encapsulated information is requirements (stimulus-response pairs) instead
of data structures or hardware interfaces.

Encapsulating the stimulus-response pairs of a stimulus set involves creating code for:

a. the external interface protocols that exhibit the stimuli;
b. the data and algorithms that implement stimulus detection;
c. the data and algorithms that implement response generation;
d. the external interface protocols that exhibit the responses.

To illustrate the general structure of a functionality module, we will start with the behavior
table for the Main Ops stimulus set from post 6. For this example, we will use the behavior
table as it appears in post 6 and ignore the fact that the init response would likely not be
needed in a fully-specified requirements spec for AAR.

AAR Behavior Table for Main Opts SS
D&I D&I

Stimulus Normal NSR Error Constraint Guidance PAP
-------- -------- -------- -------- ---------- -------- --------

22

init INPUT
 pdf_file
 pdf_file_name
 pdf_file_content

IF pdf_file_name specified
 IF pdf_file is found and valid

display Main Ops
activate Right Display Region SS
activate Left Display Region SS

show pdf_file_content in Right Display Region 1.0 sec max
 ENDIF
 IF pdf_file not found or invalid

activate File Error SS
display Main Ops

 ENDIF
ENDIF
IF pdf_file_name not specified
 display Main Ops
ENDIF

-------- -------- -------- -------- ---------- -------- --------
File

activate File SS
-------- -------- -------- -------- ---------- -------- --------
Edit

activate Edit SS
-------- -------- -------- -------- ---------- -------- --------
Document

activate Document SS
-------- -------- -------- -------- ---------- -------- --------
View

activate View SS
-------- -------- -------- -------- ---------- -------- --------
Window

activate Window SS
-------- -------- -------- -------- ---------- -------- --------
Help

activate Help SS
-------- -------- -------- -------- ---------- -------- --------

A functionality module that implements this behavior table as a GUI menu, per AAR, would
have the general structure shown below.

//
**

23

// class that encapsulates requirements (stimulus-
// response) pairs for AAR Main Ops behavior table
class MainOps extends Menu {

// ---------------- data declarations for stimulus GUI protocol -------------
 private MenuItem file;
 private MenuItem edit;
 private MenuItem document;
 private MenuItem view;
 private MenuItem window
 private MenuItem help;

// ---------------- data declarations for response behavior support ---------
 private <any needed variable declaration>;

// ---------------- constructor for MainOps object --------------------------
 public MainOps() {
// create menu GUI layout
 createMainOpsMenu();
// perform initialization response
 initResponse();
 }
// end of constructor for MainOps object

//
===
=======
// Stimulus Methods
//
// ---------------- method for creating menu GUI layout ---------------------
 private createMainOpsMenu() {
// create stimuli for menu GUI protocol
 file = new MenuItem ("File");
 :
 help = new MenuItem ("Help");
// layout the stimuli in a horizontal row
 <GUI-specific layout code>
// enable stimuli
 <GUI-specific stimulus activation code>
 }
// end of method for creating menu GUI layout

// ---------------- method for detecting stimulus events --------------------
 public handleEvents(Event event) {
 if (<event is from File stimulus>) {
 fileResponse();
 }

24

 else if (<event is from Edit stimulus>) {
 editResponse();
 }
 else if (<event is from Document stimulus>) {
 documentResponse();
 }
 else if (<event is from View stimulus>) {
 viewResponse();
 }
 else if (<event is from Window stimulus>) {
 windowResponse();
 }
 else if (<event is from Help stimulus>) {
 helpResponse();
 }
 }
// end of method for detecting stimulus events

// ===
// Response Methods
//
// ---------------- method that performs init response ----------------------
 private initResponse() {
// INPUT
// pdf_file
 <implementing code>
// pdf_file_name
 <implementing code>
// pdf_file_content
 <implementing code>
//
// IF pdf_file_name specified
 <implementing code>
// IF pdf_file is found and valid
 <implementing code>
// display Main Ops
 <implementing code>
// activate Right Display Region SS
 <implementing code>
// activate Left Display Region SS
 <implementing code>
// show pdf_file_content in Right Display Region
// (must respond in 1.0 sec max)
 <implementing code>
// ENDIF
 <implementing code>
// IF pdf_file not found or invalid

25

 <implementing code>
// activate File Error SS
 <implementing code>
// display Main Ops
 <implementing code>
// ENDIF
 <implementing code>
// ENDIF
 <implementing code>
// IF pdf_file_name not specified
 <implementing code>
// display Main Ops
 <implementing code>
// ENDIF
 <implementing code>
 }
// end of method that performs init response

// ---------------- method that performs File response ----------------------
 private fileResponse() {
// activate File SS
 <implementing code>
 }
// end of method that performs File response

// ---------------- method that performs Edit response ----------------------
 private editResponse() {
// activate Edit SS
 <implementing code>
 }
// end of method that performs Edit response

// ---------------- method that performs Document response ------------------
 private documentResponse() {
// activate Document SS
 <implementing code>
 }
// end of method that performs Document response

// ---------------- method that performs View response ----------------------
 private viewResponse() {
// activate View SS
 <implementing code>
 }
// end of method that performs View response

// ---------------- method that performs Window response --------------------

26

 private windowResponse() {
// activate Window SS
 <implementing code>
 }
// end of method that performs Window response

// ---------------- method that performs Help response ----------------------
 private helpResponse() {
// activate Help SS
 <implementing code>
 }
// end of method that performs Help response

}
// end of class that encapsulates requirements (stimulus-
// response) pairs for AAR Main Ops behavior table
//
**

Some observations regarding the above functionality module:

1 The functionality module is implemented as an OO class with the same name as the
stimulus set. This makes it easy to identify the class that corresponds to a given
stimulus set in the requirements.

2 The constructor creates the protocol manifestation of the stimuli, activates stimulus
event detection, and calls a method that performs the initialization response, if any,
specified by the behavior table.
In effect, the constructor is the primary vehicle for encapsulating implementation
details of stimulus creation and activation for the stimulus set, although it will usually
rely on common service methods to carry out most of the lower-level work. The
constructor also calls a method that encapsulates any required initialization response.

3 A separate method is created to encapsulate the BT-specified response behavior for
each stimulus.
The stimulus behavior-encapsulation methods are the primary vehicle for
encapsulating response behavior. Therefore, these methods are declared private or
otherwise visibility-restricted just as field data declarations are visibility-restricted
when encapsulating data structures in objects.

4 As an aid to implementation of the required response behavior, the structured English
or PDL from the behavior table is copied verbatim into the response behavior
encapsulation methods as comments when the methods are declared.
In the above example, all BT clauses are binding requirements (i.e., external behavior)
and so are not further annotated. Were any of the clauses D&I Constraints and/or D&I
Guidance, the comments would be annotated to indicate this fact, such as by placing
the term (Guidance) or (Constraint) at the end of the clause.

5 The code that implements each clause of the response behavior is placed immediately
below its authorizing comment from the behavior table.

27

6 Developers should understand the difference between external (required) and internal
(Constraint and Guidance) behavior clauses, and implement code for each according to
the following guidelines.
Behavior-specific code that implements external behavior (requirements) will appear
in its entirety in the functionality module, with the main logic below the authorizing
BT clause comments. This is consistent with the concept that a functionality module
encapsulates the implementation of its associated requirements. Parts of the response
may be delegated to internal methods of the FM consistent with good modular design
of a class. Of course, common service modules are used to provide general, i.e., non-
behavior-specific, services.
Behavior-specific code that implements internal behavior (Constraints and Guidance)
will appear below their respective BT clause comments in the form of method calls to
common services modules. This is consistent with the concept that internal details,
including internal response aspects of the total responses to external stimuli, are the
domain of common service modules. An example of common service module code that
implements internal response behavior of a stimulus might be a method that
encapsulates "business logic" that has no direct externally visible effect, such as
accessing an internal data cache.

The above guideline regarding segregation of internal behavior-specific code between
functionality and common service modules should be adhered to unless the Quality
Requirements indicate another mapping of the internal behavior to code modules results in
improved quality. In all cases, however, external behavior-specific code should be located in
the functionality module itself.

Rick Lutowski

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27

